首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1836篇
  免费   394篇
  国内免费   363篇
测绘学   99篇
大气科学   608篇
地球物理   495篇
地质学   583篇
海洋学   225篇
天文学   7篇
综合类   139篇
自然地理   437篇
  2024年   5篇
  2023年   23篇
  2022年   51篇
  2021年   72篇
  2020年   68篇
  2019年   85篇
  2018年   76篇
  2017年   95篇
  2016年   76篇
  2015年   98篇
  2014年   125篇
  2013年   165篇
  2012年   141篇
  2011年   143篇
  2010年   119篇
  2009年   132篇
  2008年   119篇
  2007年   135篇
  2006年   118篇
  2005年   113篇
  2004年   97篇
  2003年   88篇
  2002年   45篇
  2001年   40篇
  2000年   54篇
  1999年   46篇
  1998年   43篇
  1997年   37篇
  1996年   40篇
  1995年   39篇
  1994年   21篇
  1993年   13篇
  1992年   12篇
  1991年   8篇
  1990年   4篇
  1989年   6篇
  1988年   11篇
  1987年   7篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1972年   5篇
  1971年   4篇
排序方式: 共有2593条查询结果,搜索用时 31 毫秒
101.
Z. L. Li  Z. X. Xu  J. Y. Li  Z. J. Li 《水文研究》2008,22(23):4639-4646
Shift trend and step changes were detected for runoff time series in the Shiyang River basin, one of the inland river basins in north‐west China. Annual runoff data from eight tributaries as well as both annual and monthly runoff from the mainstream from 1958 to 2003 were used. Seven statistical test methods were employed to identify the shift trends and step changes in the study. Mann–Kendall test, Spearman's Rho test, linear regression and Hurst exponent were used to detect past and future shift trends for runoff time series, while the distributed‐free CUSUM test, cumulative deviations and the Worsley likelihood ratio test were used to detect step changes for the same time series. Results showed that the annual runoff from Zamu, Huangyang and Gulang rivers, as well as both annual and monthly runoff from the mainstream, show statistically significant decreasing trends. Future tendency of runoff for both tributaries and mainstream were consistent with that from 1958 to 2003. Step changes probably occurred in 1961 for the runoff from Huangyang, Gulang and Dajing rivers according to the Worsley likelihood ratio test, but no similar results were found using the other two test methods. Three change points (1979, 1974 and 1973) were detected for the mainstream using different methods. These change points were close to the years that reservoirs started to be operated. Both climate change and human activities, especially the latter, contributed to the decreasing runoff in the study area. Between 21% and 79% of the reduction in runoff from the mainstream was due to the impact of human activities during the past few decades. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
102.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
103.
食物生产是影响温室效应气体排放的重要方面,由于食物类型不同其碳排强度存在较大的差异,因此当前中国居民食物消费快速演替必然会对生态碳环境产生重要影响。论文利用洛伦兹曲线和基尼系数,研究1997—2016年中国城乡居民食物消费在生产过程中碳排放时空演变及其主要驱动因子。主要结论如下:① 在数量上,中国居民食物消费碳排放总量和人均量整体都呈现逐渐的增长刚性,但仍属于低碳消费模式;② 在结构上,各类型食物碳排放演变呈现显著的分异态势,整体上动物性食物碳排放增长速度快于植物性食物碳排放减少速度;③ 在城乡差异上,城镇和乡村居民食物消费碳排放在数量、结构和趋势上表现出显著的城乡二元属性,但近年城乡差异表现出减缓趋势;④ 在空间上,各地食物消费碳排放呈现较显著的民族性、地域性、集聚性和中心“塌陷”的特征,碳排放密度高值主要分布在直辖市和沿海经济相对发达地区;⑤ 在驱动力上,结构演替是全国居民食物消费碳排放总量整体变化的主要驱动因素,而人口数量是各地地域空间差异分布的主要驱动因子。  相似文献   
104.
Z. X. Xu  T. L. Gong  J. Y. Li 《水文研究》2008,22(16):3056-3065
The Tibetan Plateau has one of the most complex climates in the world. Analysis of the climate in this region is important for understanding the climate change worldwide. In this study, climate patterns and trends in the Tibetan Plateau were analysed for the period from 1961 to 2001. Air temperature and precipitation were analysed on monthly and annual time scales using data collected from the National Meteorological Centre, China Meteorological Administration. Nonlinear slopes were estimated and analysed to investigate the spatial and temporal trends of air temperature and precipitation in the Tibetan Plateau using a Mann–Kendall method. Spatial analysis of air temperature and precipitation variability across the Tibetan Plateau was undertaken. While most trends are local in nature, there are general basinwide patterns. Temperature during the last several decades showed a long‐term warmer trend, especially the areas around Dingri and Zogong stations, which formed two increasing centres. Only one of the stations investigated exhibited decreasing trend, and this was not significant. Precipitation in the Tibetan Plateau has increased in most regions of the study area over the past several decades, especially in the eastern and central part, while the western Tibetan Region exhibited a decreased trend over the same period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
105.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
106.
Analysis of spatial and temporal variations of reference evapotranspiration (ETo) is important in arid and semi‐arid regions where water resources are limited. The main aim of this study was to analyse the spatial distribution and the annual, seasonal and monthly trends of the Penman–Monteith ETo for 21 stations in the arid and semi‐arid regions of Iran. Three statistical tests the Mann‐Kendall, Sen's slope estimator and linear regression were used for the analysis. The analysis revealed that ETo increased from January to July and deceased from July to December at almost all stations. Additionally, higher annual ETo values were found in the southeast of the study region and lower values in the northwest of the region. Although the results showed both positive and negative trends in annual ETo series, ETo generally increased, significantly so in six (~30%) of the stations. Analysis of the impacts of meteorological variables on the temporal trends of ETo indicated that the increasing trend of ETo was most likely due to a significant increase in minimum air temperature, while decreasing trend of ETo was mainly caused by a significant decrease in wind speed. At the sites where increasing ETo trends were statistically significant, the rate of increase varied from (+)8·36 mm/year at Mashhad station to (+)31·68 mm/year at Iranshahr station. On average, an increasing trend of (+)4·42 mm/year was obtained for the whole study area during the last four decades. Seasonal and monthly ETo have also tended to increase at the majority of the stations. The greatest numbers of significant trends were observed in winter on the seasonal time‐scale and in September on the monthly time‐scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
107.
Micromorphology of solonetz species with special attention to natric horizon was studied in microcatenas at the Dzhanybek Research Station (northwestern Caspian Lowland). The solonetzic (natric) horizon is easily identified, and it occurs at varying depths, which are the criteria for subdividing solonetzes into 4 species, namely, crusty, shallow, medium and deep. In this sequence, the depth of humus-accumulative horizons increases, and the upper boundary of salinity manifestations goes down. The following micromorphological features are assumed as typical for natric horizons: angular blocky microstructures with partially accommodated aggregates having sharp boundaries and narrow plane-like packing voids; b-fabric speckled in the aggregates' centers and monostriated at their peripheries merging into stress coatings; very few interpedal voids; organo-clay coatings; humus- enriched infillings; no calcite and gypsum pedofeatures. A complete set of "natric" features was found only in the crusty solonetz; the shallow solonetz lacks only illuviation coatings, while the medium and deep species have several modifications of fabric elements: blocky aggregates have a rounded shape and are penetrated by biogenic channels favoring their further biogenic reworking; plant residues became more abundant and diverse, and blackened tissues occur; illuviation clay coatings evolved into papules; stress coatings gave birth to striated bfabrics, thus maintaining a high plasma orientation. The thin sections of natric horizons made 50 and 20 years ago were examined to study the influence of environmental changes (increase in precipitation and rise of ground water table) on micropedofeatures. The following processes took place: (i) in the topsoil: humus accumulation and biogenic structurization; (ii) in the natric horizon - re-arrangement of clay coatings into micromass b-fabrics; and (iii) in the lower part of the natric horizon - development of pseudosand fabric, calcite and gypsum formation. The trends revealed are in good agreement with the environmental events.  相似文献   
108.
Seth Rose 《水文研究》2009,23(8):1105-1118
An extensive dataset (230 precipitation gauges and 79 stream gauges) was used to analyse rainfall–runoff relationships in 10 subregions of a 482000 km2 area in the south‐eastern USA (Maryland, Virginia, North Carolina, South Carolina and Georgia). The average annual rainfall and runoff for this study area between 1938 and 2005 were 1201 and 439 mm, respectively. Average runoff/rainfall ratios during this period varied between 0·24 in the southernmost Coastal Plain subregion to 0·64 in the Blue Ridge Province. Watershed elevation and relief are the principal determinants governing the conversion of rainfall to runoff. Temporal rainfall variation throughout the south‐eastern USA ranges from ~40% above and below normal while the variation for runoff is higher, from ? 75% to + 100%. In any given year there can exist a ± 25–50% error in predicted runoff deviation using the annual rainfall–runoff regression. Fast Fourier Transform and autoregressive spectral analysis revealed dominant cyclicities for rainfall and runoff between 14 and 17 years. Secondary periodicities were typically between 6–7 and 10–12 years. The inferred cyclicity may be related to ENSO and/or Central North Pacific atmospheric phenomena. Mann–Kendall analyses indicate that there were no consistent statistically significant temporal trends with respect to south‐eastern US rainfall and runoff during the study period. The results of U‐tests similarly indicated that rainfall between 1996 and 2005 was not statistically higher or lower than during earlier in the study period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
109.
Stochastic characteristics of the Benue River streamflow process are examined under conditions of data austerity. The streamflow process is investigated for trend, non-stationarity and seasonality for a time period of 26 years. Results of trend analyses with Mann-Kendall test show that there is no trend in the annual mean discharges. Monthly flow series examined with seasonal Kendall test indicate the presence of positive change in the trend for some months, especially the months of August, January, and February. For the stationarity test, daily and monthly flow series appear to be stationary whereas at 1%, 5%, and 10% significant levels, the stationarity alternative hypothesis is rejected for the annual flow series. Though monthly flow appears to be stationary going by this test, because of high seasonality, it could be said to exhibit periodic stationarity based on the seasonality analysis. The following conclusions are drawn: (1) There is seasonality in both the mean and variance with unimodal distribution. (2) Days with high mean also have high variance. (3) Skewness coefficients for the months within the dry season period are greater than those of the wet season period, and seasonal autocorrelations for streamflow during dry season are generally larger than those of the wet season. Precisely, they are significantly different for most of the months. (4) The autocorrelation functions estimated "over time" are greater in the absolute value for data that have not been deseasonalised but were initially normalised by logarithmic transformation only, while autocorrelation functions for i = 1, 2 365 estimated "over realisations" have their coefficients significantly different from other coefficients.  相似文献   
110.
尝试对美国爱荷华州东部66个气象观测站1951~2000年的月均最低气温数据进行时空特征分析和建模。将时空数据分解为时空趋势和时空残差两部分,使用非线性时间序列模型模拟气温的时空趋势,分析模型参数和残差的时空特征,探索时空数据建模方法。案例研究表明研究区域内所有站点的时间序列特征较一致,可采用一个趋势性和周期性模型表达。同时残差部分具有一定的时空自相关特征,建议开发一个简单方法进行时空数据插值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号